STABILITY OF CYLINDRICAL SHELLS SUBJECTED
TO COMBINED AXIAL COMPRESSION AND INTERNAL
PRESSURE UNDER CREEP CONDITIONS

L. M. Kurshin and V. T. Shcherbakov UDC 629.735.33.023.2

The critical strain of a cylindrical shell subjected to combined axial compression and inter-
nal pressure is computed under creep conditions. A method is proposed to determine values
of the initial deflections by means of elastic shell test data for a creep analysis of shells,
Data of an experimental investigation of the creep stability of shells are presented, which
are compared with the results of the computation.

1. Certain values of the initial imperfections of the middle surface should be given for the stability
analysis of a cylindrical shell under creep conditions in conformity with the method elucidated in detail in
[1]. The method of selecting the initial deflections for an analysis of a compressed cylindrical shell was
examined in [2], where it has been shown that combinations of values of the symmetric and nonsymmetric
compounds of the initial deflection can be selected from the data of an elastic experiment, and small sym-
metric and large nonsymmetric deflections should be taken to compute the strain under creep conditions.

The influence of the internal pressure on the critical strain during shell compression under creep
conditions is investigated in this paper.

To solve the problem of creep stability of a cylindrical shell subjected to axial compressive forces
and internal pressure, it is necessary to have the solution of the elastic problem for a shell with an initial
deflection as the initial condition. Letting & and w denote the stress and deflection functions, respectively,
let us write the nonlinear equations of a shallow cylindrical shell

(1/B) AAD = (17 R) (W — Welux + Wi® — WyeWyy — (wo,xy1 — Wo,xstlo,yy)
(1.1)
—DAA (0 — wy) — (1 /R) @ + Dy, + Oty — 2D W0,y + g =0

Here B =Eh, D=(8/9)Eh3, E is the elastic modulus, 2h and R are the shell thickness and radius, re-
spectively.

Let us give the initial deflection in the form

w, = f,° sin (*/,) az sin (my/R) 4 1,° cos azx 1.2)

Assuming the bending mode to be conserved under loading, we take

w = f, sin (},) oz sin {my/R) + fycos ax + f3 1.9)

Having determined the function & from the first equation in (1.1) and having integrated the second
with respect to the coordinates x and y in the Bubnov ~Galerkin sense, we obtained a system of nonlinear
equations in the dimensionless elastic deflections ¢ ;=f 4 2h and ¢y =f 3/2h
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18P + by + 10 =0 {1.4)
{0079 2 — 4/ (40%7) [(n / 4) (2 — &) + &)
@Y LG, - (G (5 — O]/ @noRd)} male =0
my = (&) ) (& + 5O — v, — 162,50

ng = (1 /o) 8% — (4p) / (8n) + 1/ (40%92) + (28,2ys) / 9%
Y= (82 + 1) /4 9, = () 802 + 1/ (nP)
ve =1 /M2 F 1/ (8102, A = (824 1)/
hy = (992 - 1) / (907

Here we have introduced the guantities
GO =012k, L0 =f,/2h, & = (aR)/ (2m), 4 = (m?h) | R
as well as the dimensionless parameters of the axial compression p and the internal pressure g,
p = (3Ro) / (4Eh), q = (q*R? | (2Em?)

where ¢, q* are the axial compressive stress and the internal pressure.
s 4

Equations (1.4) determine the dependences of the deflections ¢; and ¢, on the loads p and q. The de-
terminant

M = a8y, — 05505 (1.5

vanishes when the limit points on the strain curve are reached.

In the case of large initial deflections, the quantity M does not vanish, and the condition that the min-
imum value of (1.5) is reached, which corresponds to the maximum strain rate of the shell, is used as the
stability criterion.

We have used the following notation in (1.5):
o = 29.0% + ny ay, = g
G = 32y350 8, — (1 /M) B/ A2 + 1) + (AL4,°) / A®) — 16y,58,°L,°
8ap = (479%) yolaly — (1/m) [1/ (820,2) + 4/ (809)] Ty — (27 92) L%, + 3,0 / (2n022)

Presented in Fig. 1 are the dependences of the symmetric (dashed curves) ¢, and nonsymmetric
(solid curves) ¢, deflection on the compressive load p according to (1.4) for various values of the internal
pressure parameter q=0, 0.2, 0.4, 0.6, 0.8, 1.0 (curves 1-6, respectively) for {,=¢ 4 =0.2, §0=3§2°, Lok =
3¢ 10. The following wave-for mation parameters were taken in the computations: 4 =1 (related to the shape
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of the dents), 7 =0.375 (characterizes the quantity of dents over the circumference). The value 7 =0.375
of the parameter corresponds to the buckling mode of an ideal shell under pure compression, and the value
4 =1 corresponds to square nonsymmetric dents.

Computations for the selection of these parameters from the condition of a minimum critical load (or
the critical time under creep conditions) permit making the deduction that the results depend slightly on the
values of these parameters in a known range. For the compression case, the results of such computations
are presented in Fig. 17 of [1], for example. The parameters < and 7 are related to the wave-formation
parameters in [1] as follows:

B =0, n==017,p

Presented as an illustration in Fig. 2 are dependences of the critical axial compression load for di-
verse combinations of the initial deflections. The values of the initial deflections ¢, and ¢ g, are given be-
low for curves 1-12:

No, 1 2 3 4 5 6 v8 9 1w 11 12
ot 0 U 0.6 0Bt 005 0.0 0.1 0.2 0.2 0.2 0.6 0.6 0.6
S0 005 0.1 W2 0.2 01 v 005 0.0 0.2 0.05 0.1 0.2

Various combinations of the symmetric ¢, and nonsymmetric ¢ 4 components of the initial deflection
correspond to the very same critical value of the compressive load p. A number of such combinations is
presented below for the case p=0.5. The dependences of p on q for these initial deflection combinations
will appear as a fan of curves (Fig. 3) when computing the critical values

No.. 1 2 3 4 3 6 7 8

et 0 0.03 0.165 0.26 0.33 0.46 0.50 0.5
Lox L0 0.8 0.6 0.4 0.15 0.06 0.015 0

As a comparison, the dashed lines show the curves from [3], at which the critical load was sought when
terms associated with discarding deflection amplitudes of more than second degree in the nonlinear equa-
tions of the type (1.4). The curve g corresponds to a nonsymmetric initial deflection (¢ 4=0), while curve

b corresponds to the symmetric deflection (£ g =0). It is seen that this simplification exaggerates the crit-
ical axial compression load for a nonsymmetric initial deflection.

2. Let us use the equations in [4] which take account of a geometric nonlinearity for the perturbed
state of a cylindrical shell with an initial deflection under creep conditions. For the case of power-law
creep pi :A(rin (where pi, oi are the creep rate and stress intensities) and axial compression and internal
pressure acting on the shell, the equations are

AND & (n— 1) e 33, 0,03 — B [r (W we) — e § T (w, wo)d_s,] -0 @.1)

0

Uw, wy, D) + e-ESgED (AA =3 AN (w — w,)dE + (3n/4) De= Se"i.\.\ (w—wy)dé +q=0
[}

5
T (w, wg) = wyy® — wellyy — Woy o® — Wo, axlor yy) ~ (1/ R) (W — o)ax
U w, wy, D) = — DAA (w — wy) — (1) R) (¢*R -+ @,y) + 2h0,Aw + Oy woy + Doy — 20,05y
A=g210a2 +6%/ay, A=—(1/%)8/d2® + (M/x)&]dy
Ay = —( /%) 62/ 0y + (1] 2%) 8%/ 8 - (b /%) &/ da2 — ([ 2x) &%/ 0y*

% =VI+LFR, A= (*R)/(2ko) = (3q) / (4p)

O = —0. Gy = (¢*R) / (2h),
E=(Ep;)/ o, = EAc 1t
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Let us seek the solution of (2.1) in the form
w = @ (§) fy sin (*,) az sin (my / R) + @, (§) fyeos ez + @5 ) fs (2.2)

@ = P; () 4, cos oz + P, (E) 4, cos (my / R) +
+ g (&) Agsin (1) ax sin (my / R) 4 ¢, (E) A, sin (3/,) oz sin {my/R)

Here f 4, f, are the solution of the system (1.4) corresponding to elastic strain of the shell, We have
the following initial conditions,

@1 (0) = @, (0) = @5 (0) =P (0} =, (0) =1, (0) = ¢, (O) =1 2.9)
at ¢ =0 for Egs. (2.1) describing the creep process.

Integrating (2.1) with respect to the coordinates x and y in the Bubnov—Galerkin sense, we obtain a
system of nonlinear integral equations for the functions®i(§)

a1 @y + a9y + ag = 0, by -+ by, + by = 0

o, = — Ly lgn — () p — (] 4) &0 + (1 9%) £,° g /8% 2.4
ay = [(44,"Cy) /9% g4
a5 = — 020 lgr — (45,0 / (0%, — (1 %) 2ap1@alale +
4 (] 4) g29°L® + (16m 7 0%) 930197 5182° — {ky ] 4) ge@181don +
4 (2ky  9%2) 2058, — 1/ (20)] g5 + (by [ 0%) gerfy —
— (16km) / (819%A,7) @y 8af s — (€5 1 3) [(34/3) M* —
— hg? | %2} T 55 — [(ngs) 131 (Ng? [ %2 J s
by = (28:°L:gs) / 9%, by = Gy [g2 — (*/3) Pl
by = — iLy® + £/ (40%) — (g,0:°0.%) / (40%) +
+ (BnvsPi?9e8i28s) / 0% A (a1 Lagy) / (8%0:%) — (Fage) ! gs —
— Bkl ) [ (BL92,) — (16g4/9) [(4 — 3 /%) Tt

+BrTy) 192]
g1 = (48%02) /9 + 1/ (B%)2), g =02+ 1/
gs = 1/ M% — G0y, gy — 1 +8/M2
gs = Ja3 — 40T, ge=Ju — (/4 Je
g = (640) /9 + 1/ (0%), gy = 0%y

|3
Ny = (82 — M) 10, Ty = e (55 H, (Bt
0
Hy = 9,8 — &% H, = .20, — 5%
Hy = o8 — &Y H, = 010,018 — L0 g
=1+ (m—1)0,+ AN %
By =44+ {n—1DA 40122/
By =1+ (n—1) (Y, +2) 82 — (1 + A/ 2)]/ [« (8% 4 1)%]
k, =1+ (n—1) (-390 — (1 +> [ 2)12 ] [#2 (992 4 1)%
Integrating the system (2.4) with respect to ¢, we find an expression for the determinant:
M = ay3055 — G120 2.5)

whose zero value corresponds to a limit point on the deflection curve during creep and determines the di-
mensionless critical parameter gk:EAo-in‘it related to the time. The values of the deflections ¢ 4, ¢4 are
obtained by numerical integration of (2.4) as a function of the dimensionless time. Shown as an illustration
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in Fig. 4 are the dependences of the symmetric ¢, (£) and nonsymmetric ¢ 4 (¢£) deflections for two values
of the axial load p and the same value of the pressure q=0.075 (£ =0.2, {4, =0.05, n=3). The dashed lines
show values of the determinant M (£ ; corresponds to the limit and £,, to the inflection points).

On the basis of the computations performed, it can be concluded that both the symmetric and the non-
symmetric deflections grow during creep under large axial compression loads. As the axial load dimin-
ishes at the same internal pressure, the nonsymmetric deflection grows more intensively than does the
symmetric deflection. The shell buckles in an axisymmetric mode. The shell buckles in a nonaxisymmet-
ric mode up to some ratio between the internal-pressure parameter q and the compressive-load parameter
p, then the shell buckles in a symmetric mode as this parameter increases. This agrees qualitatively with
the results of experimental investigations [5].

The total critical strain £} comprised from the elastic strain and the shell strain accumulated up to
the time of buckling under creep conditions,

e=p(l+E) (2.6)

was calculated by means of the value of the critical parameter €.

Results of computing the critical dimensionless axial strain £ (2.6) as a function of the axial load
obtained by solving (2.4) by using the criterion (2.5) for different values of the initial pressure parameter
g=1, 0.5, 0.25, 0.0 (curves 1-4. respectively), are presented in Fig. 5. The results of the computations
correspond to £,=0.5, £k =0.2. The solid curves refer to n=3 and the dashed curves, to n="7.

As the internal pressure increases to the value q =0.25, the critical strain grows for all the values
of the compressive stress p. As the internal pressure increases further, the critical strain grows only for
large compression stresses. The inflections on the critical strain curves are related to the replacement
of the nonsymmetric by the symmetric buckling mode. As the creep index n increases, the critical strains
diminish for the very same level of p and q.

3. An experimental investigation of the stability of cylindrical shells under creep was conducted to
verify the computed results. Shells turned from the material D16T were tested; the geometric shell dimen-
sions were: thickness 2h=0.5 mm, radius R =88 mm, length [ =425 mm. The test temperature was T =
250°C. The deviation of the temperature along the shell generator and over the circumference did not ex-
ceed 5°C. The axial load, thetime, and contraction of the shell by which the creep strain was estimated
were measured in the experiment. A total of 13 shells were tested for stability under axial compression
and internal pressure without heating. Also, two shells were tested at the same internal pressure. The
results of the elastic tests are represented by points in Fig. 6. The critical compressive load grows as
the pressure rises in the investigated pressure range.
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In all, ten shells were tested for stability under creep conditions and compression without internal
pressure. The test results are presented in Fig. 7 (a and b). A total of seven shells (a) were tested under
different constant compressive load levels; three shells (b) were tested without creep under rapid (5-10
sec) loading up to buckling (T =250°C).

We tested eight shells for stability under creep with axial compression and the internal pressure g* =
1 kg/cm? (g=0.11). After the shell had been heated to T =250°C, an internal pressure was supplied, then the
axial load was applied. Then two shells (c) were loaded rapidly (5-10 sec) up to buckling, the rest (d) were
tested for creep with axial loads comprising a part of the load for buckling. It is seen that internal pres-
sure increases the critical creep strain considerably.

The results obtained permit the expression of reasoning about the method of the stability analysis of
shells subjected to axial compression and internal pressure under creep conditions. The main difficulty
is the correct selection of the values of the initial deflection components (the symmetric ¢, and nonsym-
metric ¢ g introduced in the computation.

If there are shell test results on the elastic stability under compression without internal pressure,
then a combination of values of the initial deflections can be determined. Having the elastic test data with
internal pressure and axial compression available, a combination of the symmetric ¢, and nonsymmetric
¢ o initial deflections, corresponding best to the data of the elastic experiment with internal pressure, can
be found from the set of combinations of the initial deflections. The deflections selected in this manner are
then inserted in the computation of shells operating under creep conditions with a combined loading,

Let us deter mine the initial deflections and then the critical strains according to the proposed method
for shells whose creep test results have been presented above.

The magnitude of the critical load under elastic buckling without internal pressure for the tested
shells is p=0.55 (Fig. 6), The combinations of initial deflections presented below, which have been selected
from the results of solving the elastic problem of axial compression of a cylindrical shell [1], correspond
to this critical load. Dependences of the critical axial compression load on the internal pressure have heen
obtained for these combinations of the initial deflections by means of (1.4). A series of such curves ob-
tained by computations is presented in Fig. 6 and corresponds to combinations of initial deflections (see be-
low),

No, 1 2 3 4 5 6
Go 0 0.03 0.075 0.12 0.22 0.35
Cox 0.68 0.60 0.5t 0.40 0.20 0.03

The initial deflections (=0, ¢ g, =0.68 correspond best to the shells tested (Fig. 6). The dependences
of the total critical shell strain under creep, shown by curves 1, 2 in Fig. 7 for the cases q=0 and 0.11, re-
spectively, which were computed by means of (2.4)-(2.6), correspond to these values of the initial deflec-
tions.

The agreement between the results of analyzing shells under creep by the method used and the re-
sults of the experiment is satisfactory.
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